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Residual stresses in plastics, rapidly cooled from 
the melt, and their relief by sectioning 

N. J. MILLS 
Department of Metallurgy and Materials, University of Birmingham, Birmingham, UK 

A theory for the residual stresses in tempered glass plates has been adapted for the 
cooling of plastics, which have temperature dependent thermal properties. The theory 
was checked against experimental residual stress distributions found in quenched 
polycarbonate sheet, and against the analytical solution for temperature independent 
properties. The heat transfer coefficient for quenching polycarbonate from 170 ~ C into 
iced water was found to lie between 1000 and 4000 W m -2 K. It is known that the 
cutting of thin sections from a sheet relieves the residual stresses, and this is used for 
transparent plastics to distinguish between orientation and stress bi-refringence. An 
elastic stress analysis of the sectioning process showed that the section width must be 
less than 20% of the sheet thickness for the residual stresses to be reduced to 5% of 
their original values. 

1. Introduction 
There has been considerable interest recently in 
the measurement of  residual stresses in a variety of  
polymers including polycarbonate, PC [1, 2],  
polystyrene, PS [3], polyethylene, PE [4], poly- 
propylene, PP [5], a polyamide [6], and poly- 
methylmethacrylate, PPM [I ,  2]. These residual 
stresses occured as a result of the rapid cooling in 
the injection moulding or extrusion processes. 
These are real stresses that act at room tempera- 
ture, and can be released by cutting up the 
polymer. They should not be confused with 
molecular orientation, which is also present, 
and has been caused by the stresses involved in the 
flow of a viscoelastic liquid into a mould or through 
a die. When the flow ceases the molecular orien- 
tation begins to relax, but solidification often 
occurs before this process is complete, and the 
molecular orientation is frozen in. Although 
such molecular orientation can be predicted [7] it 
is not considered in this paper, except as a phenom- 
enon to be separated from stress bi-refringence by 
suitable sectioning experiments. The object of 
this paper is to find a suitable theory for the 
residual stresses that arise as a result of heat flow 
in one dimension, using the known temperature 
dependent thermal properties of the polymer. 
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A number of attempts have been made to pre- 
dict the stresses that arise due to the tempering of 
plates of soda-lime-silica glass. In the theory of 
Aggarwala and Saibel [8] it is assumed that the 
glass changes from a zero viscosity liquid to an 
elastic solid when the temperature falls below a 
certain value, that is approximately equal to the 
glass transition temperature Tg. In a recent review 
[9] the modelling of the viscoelastic behaviour of  
the glass in the transition range was discussed. It 
was shown that this had to be done with care to 
produce results that were better than those 
obtained assuming a sudden transition from an 
inviscid liquid to an elastic solid. The common 
feature of  the predictions is that the in-plane 
tensile components of the residual stress vary from 
a maximum tensile value at the midplane to a 
maximum compressive value at the surfaces. 

Since this type of residual stress distribution 
has been observed in plastic sheets [1 ],  it is likely 
that some features of the theories developed for 
silicate glasses should be applicable for plastics. 
The experimental determination of residual stresses 
is a lengthy process, whether it may be by section- 
ing and bi-refringence measurements [2], by pro- 
gressively machining away one side of the sheet 
and monitoring the resulting curvature [1 ], or by 

0022-2461/82/020558-1753.70/0 �9  Chapman and Hall Ltd. 



interpreting stress relaxation measurements [ I0] ,  
so it would be an advantage to be able to predict 
the residual stresses that arise as a result of  plastics 
processing. 

Knappe [11] has quoted a formula from 
Timoshenko [12] that describes a parabolic vari- 
ation of stress with position in a sheet. However 
reference to Timoshenko shows that the formula 
is the result of a thermoelastic calculation for a 
sheet in which the temperature varies parabolically 
with position. Such a theory cannot explain the 
existance of residual stresses in a sheet at a uniform 
temperature. Rigdahl [13] has presented some 
limited results of residual stress calculations for 
three-dimensional heat flows in polystyrene using 
the finite element method. However there do not 
appear to be any one-dimensional heat flow 
theories suitable for polymers. 

In the present paper, in order to keep the 
boundary conditions simple, only the thermal 
tempering of a freely suspended sheet is analysed. 
However, the results should apply to most ex- 
truded profiles of  a relatively simple shape, since 
the melt pressure reduces to atmospheric pressure 
on leaving an extruder, and cooling is achieved by 
the use of  water baths, without any large axial 
force on the extrudate. However, in the injection 
moulding process considerable variations in 
pressure occur during solidification in the mould. 
Consequently, both the pressure-volume-tem- 
perature relationship of the polymer, and the 
degree of shape constraint imposed by the mould, 
need to be included in any analysis of residual 
stress development. This complicates the analysis, 
so consideration of injection moulding will be left 
to a subsequent paper. 

When sections from transparent plastic sheet 
are examined by transmitted polarized light, the 
interpretation of the bi-reffingence measurements 
is not easy. A recent publication [2] suggested 
that stress bi-refringence and bi-refringence due to 
frozen-in molecular orientation could be separated 
by measuring the bi-refringence before and after 
cutting thin slices; and that these slices should be 
less than 1 mm thick (from a sheet initially 4 or 
13.5ram thick). As these recommendations are 
based only on observed changes in bi-refringence 
patterns it was thought worthwhile to calculate 
the stress pattern in a slice taken from a residually 
stressed plate, using a recently developed bound- 
ary element stress analysis technique [14], to see 
if such slicing would remove the residual stress 
contributions to bi-refringence. 

One major reason for tempering silicate glass 
sheets is to strengthen them against bending or 
impact forces, by making it harder for surface 
cracks to propagate. Although residual stresses 
are not deliberately introduced into plastic prod- 
ucts, it is possible that they would have the same 
effect. Experiments have been made [15] to see 
the effect of notching of plastic sheets containing 
residual stresses, but in interpreting these exper- 
iments it was assumed that the cutting of a notch 
did not disturb the residual stresses. This is an 
implausible assumption, so calculations were made 
of the effect of  partially sectioning a residual 
stressed plate, which is equivalent to introducing a 
crack from the sheet surface. 

2. Theory 
2.1. Results and limitations of analytic 

theory 
The cooling of an infinite sheet by heat flow in 
one dimension has been analysed, and analytic 
solutions given when the sheet has a uniform 
initial temperature, and there is either a finite or 
an infinite heat transfer coefficient to a surround- 
ing medium that undergoes a step change in tem- 
perature [16]. These analytic expressions have 
been used [7] to calculate the residual stresses on 
cooling from an initial temperature that is well 
above Ts, the temperature at which the viscosity is 
assumed to increase from zero to an infinite value. 
For a sheet thickness of  2zo(m), a heat transfer 
coefficient at the sheet surface of h (Win -2 K), 
and a sheet material of thermal conductivity k 
(Wm -a K), the magnitude of the residual stresses 
depends on the Biot modulus [17] defined by 

hzo 
NBiot = "-~-. (1) 

The in-plane residual stresses, axx and Oyy, at a 
distance z from the mid-plane, see Fig. l ,  are 
given by 

Ea(Ts-- To) ( Sin6 ) 
Oxx = Oyy -- -l-"[; 1 8 I1 , 

(2) 
where E is the Young's modulus, o~ is the coef- 
ficient o f  thermal expansion for temperature 
between To, the temperature of the surrounding 
medium, and Ts, and u is Poisson's ratio. 8 is the 
first root of the equation 

8 tan 8 = ArBiot ,  (3) 

and I1 is the integral 
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Figure 1 Division of infinite sheet of thickness, 2Zo, into 
layers for finite difference 'heat transfer calculations. 
Nodal points at which the temperatures are calculated 
are shown as o. 

f6z/zo Sinx Sin �89 (6 - -x )  Cos �89 (6 + x )  
I1 dx 

! ~o  �89 (6 - x )  Cos  2 x 

(4) 
The notation has been changed slightly from that 
used by Aggarwala and Saibel [8], so that it is 
consistent with the use of the Biot modulus. For 
values of the Biot modulus ~ 1, then the ex- 
pression in brackets in Equation 2 becomes 
approximately 

2 ~3 ~U (5) 

showing that the residual stress varies parabolically 
with distance. The simple expression 5, cannot be 
used regardless of the value of NBiot, as was done 
in [6]. A major limitation of the analytic solution 
is the assumption that both Young's modulus and 
the thermal properties are independent of tem- 
perature. Consequently, a finite difference method 
of solution was used to incorporated temperature 
dependent material parameters. The analytic 
solution was then used as a check on the validity 
of  the finite difference method. I f  the initial tem- 
perature is only slightly above Ts, then higher 
roots of  Equation 3 should be incorporated in 
Equation 2. 

2.2. Finite difference method of residual 
stress calculation 

When the temperature only varies in one dimen- 
sion, as in the cooling of an infinite sheet from 
both sides, a one dimensional finite difference 
method can be used. Many textbooks [17] explain 
the basis of  the explicit method, and Gardon [18] 
has used this method for the tempering of glass 
plates. Fig. 1 shows how the sheet is split into 

560 

layers of  thickness Az, with the surface layer 
having a thickness Az/2 so that the heat diffusion 
distances between the 'nodes', at which the tem- 
peratures are calculated, are equal. Temperature 
profiles are only calculated at time intervals At, 
and the temperature after an elapsed time of 
( / +  1) At is calculated from the temperature 
profile after jAt  using 

T~j+l = T~i de O ( T i _ l , j  ~- Ti+l ,j - -  2T i , j ) ,  , (6) 

where the subscript i refers to the node number, 
and D is the dimensionless thermal diffusivity 
given by 

D = kAt/(pCpAZ 2) (7) 

where p is the density, and Cp the specific heat. 
At the surface of the sheet, where there is a 

heat transfer coefficient, h, Equation 6 cannot be 
used, and instead the new temperature of the first 
layer is calculate d using 

Ta ,i+a = 2HTo + (1 -- 2D -- 2H)T1 j + 2DT2j, 

(8) 
where To is the temperature of the external 
environment, and H is the dimensionless heat 
transfer coefficient such that 

H = hAt/(OcpAz). (9) 

There is a restriction on the magnitude of the time 
interval, At, to ensure that oscillatory solutions do 
not occur; expressed in terms of H and D the 
restriction is that 

O +H~< �89 (10) 

Temperature dependence of the thermal 
properties of polymers is particularly marked if 
there is a glass to liquid transition, or if crystal- 
lization occurs in the case of semi-crystalline poly- 
mers. This was recognized by Kenig and Kamat 
[19] who made cooling predictions for cylindrical 
polyethylene specimens. Temperature dependent 
constants can be used in Equations 6 and 8 so long 
as the node temperatures are known i.e. the 'old' 
temperature is used to find the thermal properties 
of the layer. Proceeding to the residual stress 
calculations, a number of further assumptions 
must be made about the geometrical constraints 
and the materials properties: 

(a) The sheet remains flat during cooling. This 
be the case for an infinite sheet cooled equally 

from both sides, or for an extruded profile, such 
as a pipe, of symmetric shape. Later calculations 



of the effect of sectioning will reveal the size of 
sheet that is effectively 'infinite'. 

(b) The sheet is free to contract in any direc- 
tion without changing the heat transfer conditions 
at the surface, and the external pressure remains at 
atmospheric throughout. External forces in the 
plane of the sheet are negligible. This will be the 
case for a freely suspended sheet, or for an 
extruded profile that is cooled by contact with a 
water bath. 

(c) There is a temperature, Ts, at which the 
properties of the polymer change from liquid- 
like to solid-like. For glassy polymers Ts will be 
just below Tg, for semi-crystalline polymers Ts will 
be approximately the temperature at which 
crystallization is complete. Any flow stresses while 
the polymer is above Ts are negligible, and likewise 
any viscoelastic effects while the temperature is 
below Ts can be neglected. (TIn_i's may be a poor 
assumption for semi-crystalline polymers). 

(d)Once the polymer cools below T s it 
becomes a linearly elastic solid, for which the 
Youngs modulus, E, is a function, E(T), of 
temperature. 

(e) The rate of  cooling through Ts does not 
have a structural effect on the polymer; in particu- 
lar it does not affect the density at any lower 
temperature. This is an approximation for glassy 
polymers since the density does increase slightly 
for slower cooling rates, and it is known that for 
silicate glasses that the fictive temperature changes 
with the rate of cooling, and that this contributes 
roughly 24% to the residual stresses [20]. For 
certain crystalline polymers the cooling rate 
affects the crystal form and/or the degree of 
crystallinity, and hence the density [6]. 

(f) For temperatures below Ts, the coefficient 
of linear expansion, a, is constant. 

(g) Although the thermal conductivity, the 
specific heat and the density can vary with tem- 
perature, the heat transfer coefficient is indepen- 
dent of temperature. 

It can be deduced from Assumptions c, d and e 
that the ith layer has a reference length Li, which 
is its gauge length in either the x or y-directions 
when its temperature = T s and it is stress free. 
The value of this length for the outmost layer, 
Li, is given the value of 1.0. At any lower tem- 
perature, when the in-plane residual stress com- 
ponents are Oxx = ay~ = o~, and the in-plane strain 
components are exx = e~,~, = ei, the gauge length 
becomes L, given by 

L - - L i  ai(1 -- v) + a(Ti _ Ts), (11) 
e i  - 

Li  Ei 

where E i denotes the Youngs modulus correspond- 
ing to the layer temperature Ti. Since the sheet 
remains flat, the gauge length, L, of  each layer is 
the same, and the value of L can be found from 
the condition that there is no external force in the 
x o ry  directions 

m 

Z aibi = 0 (12) 
i=1  

when m layers are solid, and bi is the thickness of  
the ith layer. Substituting for ai in Equation 12 
g i v e s  

1 v ~=~ 

Hence 

= 0  

(13) 

77l 

~'. Eibi[1 + a(T~ --  Ts)] 
L = i=1 (14) 

ttl 

Y. E~bi/L~ 
i=1  

Every time that the cooling calculation predicts 
that another layer has cooled below Ts, Equation 
14 is used to find L; and the Li of  the newly 
solidified layer is given this value. When solidifi- 
cation is complete Equations 14 and 11 are used 
to find the residual stresses at room temperature 
when all the Ti = Troom- A brief computer pro- 
gramme, written in FORTRAN, was used to calcu- 
late the residual stress distribution. 

2.3. Sectioning a sheet that contains 
residual stresses 

The last two sections show that an infinite sheet, 
which has been cooled by one-dimensional heat 
flow in the z-direction, may contain a residual 
stress distribution : 

ax= = ayy = a(z) for Zo > z > -- Zo 

and (15) 
azz = axe, = ayz = azx = 0 

where the function a(z)  is either determined 
analytically, or approximated by a set of  discrete 
values a(zi).  I f  this sheet is sectioned by two 
parallel planes that are normal to the x-axis, 
Fig. 2a, the result is a strip of rectangular cross 
section and infinite extent in the y-direction. On 
the two new free surfaces ABB'A' and CDD'C' 
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Figure 2 (a) A strip of cross section ABCD, and infinite length, cut from the infinite sheet in Fig. 1. (b) A residually 
stressed infinite body with imbedded displacement discontinuities that make the boundary ABCD free of normal and 
shear stress. The magnitude of the discontinuities, exaggerated 40 fold, is shown around ECF, with material overlap 
being represented by vectors pointing inside the boundary. The mirror planes, m, create image discontinuities that 
complete the boundary. 

the normal and shear stress components Oxx and 
oxz are zero. We wish to find the stress distri- 
bution in the xz-plane within the strip o f  cross 
section ABCD. 

The method used to solve this problem is that 
o f  boundary elements, each element consisting of  
a linear array of  generalized edge dislocations [14]. 
However these displacement discontinuities exist 
in an infinite body, so we must solve a problem 
that is equivalent to that described above. The 
infinite body is constructed by bonding together 
a residually stressed sheet, with stresses given by 
Equation 15, with two stress free half spaces 
z > Zo and z < - Zo. We are then concerned with 
a plane strain deformation in the xz-plane of  this 
infinite body see Fig. 2b. In it AB is the inter- 
section with the plane x = -  Xo, BC is the inter- 
tion with the plane z = Zo, etc. The n displace- 
ment discontinuity elements are arranged around 
the outside o f  the boundary ABCD, with the 
disolcation line running in the y-direction. The 
magnitudes of  the normal and shear components 
o f  the displacement discontinuity at the centre of  
each element are chosen so that the average 
normal stress and shear stress on each element 
boundary is zero. This is done by solving a set 
o f  2n simultaneous equations. Since the boundary 
stresses on ABCD in the infinite body in Fig. 2b 
are now the same as those on the boundary ABCD 
of  the infinite strip in Fig. 2a, the stress field 
within ABCD will be the same in the two cases. 

Therefore we can use the boundary element 
method to find the stress distribution within the 
strip ABCD. 

The calculation is simplified by noting that two 
perpendicular mirror symmetry planes exist in 
Fig. 2b, so that the unknown displacement dis- 
continuities on the boundary ECF have their 
images in the other three quadrants. Along CF the 
elements are centred on the nodal positions used 
in the finite difference cooling calculation, so that 
o(zi) represents the residual stress at the centre of  
each element. The calculations were made with the 
assumption of  plane strain deformation, so stresses 
oyy =--V(Oxx + Ozz) also occur. The stress field 
inside a quadrant o f  the boundary ABCD was 
presented graphically using the CUGHOST graphics 
package developed by UKAEA Culham Laboratory. 
Isochromatic contour maps of  the maximum shear 
stress in the xz-plane, and the direction and 
magnitude o f  the principal stresses were presented. 
The stress field in the xz-plane will be the same 
regardless of  whether plane strain or plane stress 
conditions apply, but the displacement fields 
differ. I f  a slice o f  thickness 2yo is taken from 
the strip in Fig. 2a, and i f y o  ~Zo  and Yo ~Xo 
(see Fig. 3) then plane stress conditions r = 
Oyz = ayx = 0 prevail. Such slices have been 
used for photoelastic observation, and the iso- 
chromatic patterns within them can still be com- 
pared with those predicted from the plane strain 
analysis o f  Fig. 2b. 
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Figure 3 A slice of thickness, 2yo, cut from the strip 
shown in Fig. 2a. The dashed lines are the light paths 
through the strip for the phase retardation measurements. 
The stress components at points O, P and Q are tabulated 
in Table I. 

2.4. Partially sectioning a residually 
stressed sheet 

If  a cut or a crack only runs part of the way 
through a sheet of residually stressed material then 
the boundary value problem is solved in a slightly 
different way to that described in the previous 
section. It is necessary to use a result described in 
Section 3.4, that the effect of completely cutting 
through a residually stressed sheet does not extend 
more that 2.5 times the sheet thickness away from 
the cut. Fig. 4 shows how the problem is modelled 
in a infinite body that contains the residual stress 
distribution of Equation 15. Boundary elements 

.............. D z. 

/7/ 

~Z 

. . . .  - Smm 

Figure 4 Modelling of a surface crack in a residually 
stressed sheet. Displacement discontinuities are imbedded 
along ABC and DE in an infinite residually stressed body, 
so that these boundaries are free of normal and shear 
stress. The displacement discontinuity magnitudes, 
exaggerated 40 fold are shown for the case of a 3 mm 
crack in a 6.15mm thick PC sheet. (Note that the crack 
faces overlap near B.) 

extend along BC and DE to a distance 5Zo from 
the crack, and these are mirrored in the plane BD. 
Elements in which the normal displacement 
discontinuity varies linearly are used along BA, 
except that the last element is a crack tip element 
in which the normal displacement discontinuity 
varies as the square root of the distance from A. 
When the boundary value problem is solved the 
opening of this crack tip element can be used to 
calculate the stress intensity factor, KI, at the 
crack tip [14]. The length, a, of the boundary AB 
was increased incrementally and the value of KI 
was calculated for each length, so that the relation- 
ship between KI and a could be evaluated. I f  the 
toughness of  the material is known this relation- 
ship can then be used to predict the possibility of  
crack growth. When the isochromatic fringe 
pattern was predicted for the interior of  the region 
CBDE this confirmed that the effects of  the crack 
were negligible at a distance x = 5Zo from the 
crack. 

2.5. Bi-refringence measurements 
Consider a thin slice of plastic such as that shown 
in Fig. 3. The thickness, 2y0 of the slice is suf- 
ficiently small so that plane stress conditions exist 
in the xz-plane. The interpretation of bi-refringence 
measurements depends on the direction of the 
light. The simplest case is when the fight passes in 
the y-direction, since the stresses axx, axz and azz 
do not vary in the y-direction, nor do the principal 
stresses ol and 0-~ calculated from them. The 
Wertheim law [21] for a elastic body can be used 

Ry = C(0-1 - -  o2)  2yo (16) 

where Ry is the retardation measured in metres, of 
a ray polarized in the 2-direction compared with a 
ray polarized in the 1-direction, and C is the 
stress optical coefficient. 

The bi-refringence, An = nl - -n2 ,  where nl 
and n2 are the refractive indices in the 1 and 2 
directions, is then given by An =Ry/2yo. 

If  the light passes in the x-direction through the 
slice, the interpretation is more complex, because 
the stress state varies along the light path. The 
"secondary principal stresses" at any point for a 
light ray in the x-direction are calculated from the 
stress components asy, Ozz and 0-zy in the plane of 
which x is the normal. For such a thin slice the 
0-ys and azy stress components are zero, and the 
secondary principal directions are constant, 
namely the y and z-axes. Equation 16 is replaced 

563 



by the integral Wertheim law, Xo 

f ;  o Rx = C ( o ~ - - O z z )  dx. (17) 
XO 

This can be simplified because (a) a~s = 0 under 
plane stress conditions, and (b) there are no 
external forces, Fz, on the slice in the z-direction, 
so the force equilibrium of any section perpen- 
dicular to the z-axis gives 

f'o o Fz = 2yo zz dx = 0. (18) 
x 

Hence, for such a slice R x = 0. A similar argue- 
ment will show that the retardation Rz,  of any ray 
travelling in the z-direction through the slice 
shown in Fig. 3 is zero. 

The above arguments are purely for stress 
bi-refringence caused by residual stresses. If  there 
is further bi-refringence caused by frozen-in mol- 
ecular orientation, this will not be affected by the 
cutting of thin sections, and Rx  and Rz will be 
non-zero. 

3. Results 
3.1. Comparison of the finite difference 

calculations for constant thermal 
properties with the analytic theory 

Initially the thermal properties of the polymer 
were assumed to be temperature independent. This 
should enable calculations for differing values of 
the heat transfer coefficient, thermal conductivity 
and sheet thickness to be represented in terms of 
the non-dimensional Biot modulus. Similarly the 
magnitude of the residual stress can be normalized 
by dividing by o*, where 

o* = E a ( T s -  To)/(1 --v). (19) 

o* combines the elastic properties and thermal 
expansivity of the material and the solidification 
and bath temperature that occur in Equation 2. 
However the finite difference calculations did not 
use a direct input of Naiot to calculate ol/o*; 
instead values appropriate for possible quenching 
experiments on polycarbonate sheet were used, 
and it was checked that the results of  varying the 
sheet thickness, 2Zo, the heat transfer coefficient, 
h, and the bath temperature, To, gave results that 
superimoposed on a graph of ol/o* against NBiot- 
Use of realistic parameters for polycarbonate also 
allow the predicted residual stresses to be com- 
pared with the known yield stress of this material. 

At 20 ~ C PC has a thermal conductivity of 
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0.21Wm -1 K, the product of the density and 
specific heat is 1.42MJm -3 K, so the thermal 
diffusivity is 0 .15mm2s -x. These properties 
were assumed to be the same at all other tem- 
peratures. The Young's modulus of PC decreases 
only slightly with temperature, so the actual 
variation was used in the finite difference calcu- 
lation. A graph of In E against temperature can be 
approximated by straight line segments passing 
through 2.2 GNm -2 at 20 ~ C, 2.0 GNm -2 at 85 ~ C 
and 1.75GNm -2 at 142~ A Poisson's ratio of 
0.4 was used. The solidification temperature used 
was Ts = 142~ which is a few degrees below 
the usually reported Tg of 145 ~ C. It was found 
that the initial polymer temperature has little 
effect on the residual stress results so long as it 
exceeded Ts + 20 ~ C, and the value of the Biot 
modulus was not excessively high. To be certain 
that it had no influence on the results an initial 
temperature of 300~ was used. When the tem- 
perature of the environmental bath was 20 ~ C, 
and room temperature was also assumed to be 
20~ and the linear thermal expansion coef- 
ficient, a = 6.5 x 10 -s o C-x, the value of a* = 
29.1 MNm -2 . The finite difference model only 
calculates the average residual stresses in each 
layer; consequently the number of layers must 
be increased to get a good representation of the 
residual stress at the outer surface of the sheet, 
where the stress varies most rapidly. Table I shows 
how the stresses in the central and surface layers 
vary as the number of layers increase, for the case 
ofNBiot = 10 (corresponding to h = 1050Win -2 K 
and Zo = 2mm) and o* = 29.1 MNm -2 . 

It is clear that increasing the number of layers 
beyond 30 hardly changes the calculated stress at 
the sheet surface. The computations were there- 
fore made for 20 or 30 layers in the half thickness. 
Fig. 5 shows how the residual stresses vary with 
the Biot modulus, for the same conditions used for 
Table I. It shows that the 20 layer finite difference 
model predicts central residual stresses that are in 
excellent agreement with Equation 2, and surface 
residual stresses that are within 11% of Equation 
2 for Nsiot ~< 20. Equation 2 becomes inaccurate 
for high values of the Biot modulus since ad- 
ditional roots of Equation 3 will be necessary to 
predict the surface temperature accurately at short 
times. Consequently the finite difference method 
can be used with confidence regardless of  whether 
or not the thermal properties of the polymer are 
temperature independent. Note that the deviation 



TAB LE I Variation in residual stresses with number of layers used in the finite difference calculation 

No. of layers in half the sheet Central layer stress MN m -2 Surface layer stress MN m -2 Computation time (see) 

11 8.81 -28 .99  0.8 
20 8.78 - 30.43 2.1 
30 8.79 -31.01 4.6 
37 8.78 -31.15 7.5 
Analytic resuR, Equation 2 8.94 --32.67 

between the surface compressive stress, and twice 
the central tensile stress which occurs for Nmot 
~> 1, means that the simple parabolic stress distri- 
bution of  Equation 5 will give erronious predic- 
tions. 

3.2. Comparison of predictions with 
published residual stress distributions 
in glassy polycarbonate 

So and Broutman [1] reported residual stress 
distributions for 6.35 and 3.18 mm thick PC sheets 
that  have been quenched from 150~ into iced 
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Figure 5 Residual stresses in a sheet of polycarbonate 
quenched from 300 to 200 C against the Biot modulus. 
(o) is the surface compressive stress, and (+) is twice the 
central tensile stress. The solid lines are the analytical 
solutions using Equation 2. The right band scale has been 
normalized using ~* of Equation 19. 
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water at 1 ~ C. Before being able to predict the 
residual stresses resulting from such an experiment,  
it is necessary to have values of  the thermal 
diffusivity of  PC, and of  the heat  transfer coef- 
ficient. Berlot [22] has determined the thermal 
diffusivity at a function of  temperature,  and the 
values, at least up to 140~ have been confirmed 
to within 15%, by calculations from published 
data on the specific volume [23], specific heat 
[24],  and thermal conductivity [25].  Fig. 6 shows 
how the thermal diffusivity, and the heat capacity 
pCp vary with temperature;  note that the data has 
been fitted by a number  o f  straight line segments 
to aid interpolation. The heat transfer coefficient 
for the quenching of  a PC plate from 120~ into 
iced water was determined by embedding two 
0.4 mm diameter thermocouple wires into a 13 mm 

thick PC plate of  area 50 x 50 mm [26].  The plate 
was made by  compression moulding pieces o f  
extruded PC sheet o f  the appropriate thickness 
together, with the thermocouple wires lying 
parallel to the surface to minimize errors due to 
conduction down the wires. The depths o f  the 
thermocouples from the surface were checked 
by sectioning the sheet after the experiment;  they 
were 0 .8ram from the surface, and at the mid- 
section. The recorded thermocouple voltages 
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Figure 6 Variation with temperature of the thermal 
diffusivity and heat capacity per unit volume for poly- 
carbonate. 
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Figure 7 Cooling curves for a 13.1ram polycarbonate 
plate, (o) is for the central thermocouple, and (x) the 
thermocouple 0.8 mm below the surface. The dashed and 
solid lines are the predictions for heat transfer coef- 
ficients of 1000 and 4000Win -2 K respectively, for the 
depths indicated. 

against time in the quenching experiment,  were 
converted to temperatures,  and then compared 
with the predictions of  the finite difference calcu- 
lations, using 30 layers for the sheet half  thickness. 
The temperature dependence of  the thermal 
diffusivity from Fig. 6 was used, and the value of  
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Figure 8 A plot of residual stress against distance from the 
centre of the sheet for 3.18 mm PC quenched from 150 to 
0 ~ C. The residual stress results of So and Broutman are as 
shown on open circles. The dashed and solid lines are 
the predictions for h = 1000 and 4000Wm -= K respect- 
ively for the 20 layer model. 
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the heat transfer coefficient was varied to get the 
best agreement with experiment.  Fig. 7 shows the 
experimental points and predictions for three 
parts of  the sheet for h = 1 0 0 0  and h =  4000 
Wm -~ K. First note that the temperature of  the 
0 .12mm thick surface falls to below 9 ~ C in 1 sec 

for h = 4000, so there is little point in increasing 
h above this value for a 13 mm sheet. The tem- 
perature results for the 0.8 mm deep thermocouple 
fall just below the predictions for the 0.9 mm deep 
layer for h = 4000 W m -2 K. There is a very strong 
temperature gradient in the outer  1 mm of  the 
sheet, so the uncertainty in the effective thermo- 
couple position o f  -+ 0.3 mm makes the estimation 
of  the h value imprecise. At the mid-point of  the 
sheet the predicted temperatures for h = 1000 or 
4000 W m  -2 K are practically identical. Hence any 
measurements at this point  are largely a check on 
the thermal diffusivity of  the PC; the close agree- 
ment with the predictions confirms the diffusivity 
data of  Fig. 6. 

The values of  the heat transfer coefficient,  and 
the thermal diffusivity data of  Fig. 6 were then 
used to predict the residual stresses in 3.18 and 
6 .35mm thick PC sheet quenched from 150~ 
to 0 ~ C. Fig. 8 shows the comparison between the 
results o f  So and Broutman for the 3 mm sheet 
( they estimate the errors in the stresses to be 10 
to  15%; this is largely due to scatter in the graph 
of  the beam curvature against the thickness 
milled away), and the predictions for a solidifi- 
cation temperature of  Ts = 142 ~ C. The predicted 
residual stress variation for h = 4000 W m -2 K 
gives the best agreement with experiment,  though 
the value in the outmost  0.027 mm thick layer at 
- - 4 0  MN m -2 is larger than the experimental  value 
o f - - 2 2 . 8 M N m  -2. Thus there is some doubt 

about the predicted values within 0.1 mm of  the 
surface. The experimental  results of  So and 
Broutman for the 6.35 thick sheet are almost 
identical with the 3 .18mm sheet results; if  any- 
thing the stresses are about 10% smaller at the 
surface. This proves to be a good check on the 

TAB LE II Predicted mid-thickness residual stresses 
(MN m -2) in PC quenched from 150 to 0 ~ C 

Sheet thickness mm Residual stresses (MN m -+) 

h*=4000  h = 1 0 0 0  h = 2 0 0  

6:35 10.8 9.9 6.4 
3.18 10.5 8.8 4.5 

*h inWm -2 K. 



magnitude of the heat transfer coefficient, as is 
shown in Table II, where the predicted tensile 
residual stresses at the centre of various sheet 
thicknesses are calculated for a range of heat 
transfer coefficients, for quenching PC from 
150 ~ C to 0 ~ C, using Ts = 142 ~ C. 

Saffell and Windle [2] have recently published 
information on the heat transfer coefficient and 
the residual stresses in the quenching of PMMA 
and PC sheets. It was hoped to use their data as 
a further check on the theory. However, a number 
of mistakes in their analysis make their results 
questionable. In Fig. 1 of their paper they refer 
to an experimental cooling curve for the midplane 
of a 2ram PMMA sheet cooled by contact with 
copper sheets at --145 ~ C, as being "fitted with 
the calculated error function curve for a ratio of  
surface conductance (h) to the bulk conductivity 
(k) of 10". "Surface conductance" is the term of 
Carslaw and Jaeger [16] for the heat transfer coef- 
ficient, and the term "error function" infers that 
they are using the solution for the surface cooling 
of a semi-infinite body. By checking with Carslaw 
and Jaeger ([16] page 123 Fig. 17 and page 124 
Fig. 18), it is apparent that they have used the 
correct analytical solution for the sheet of  thick- 
ness 2e, cooled on both sides, and that the curves 
that Saffell and Windle plot are for the dimension- 
less parameter L = 1 (L =he~k,  i.e. the Blot 
modulus). Therefore h/k  is not dimensionless as 
Saffell and Windle imply, but has the value 10 cm -x 
for their sheet of e = 0.1 cm. Consequently for 
PMMA which has a thermal conductivity of 0.2 
W m-ZK the heat transfer coefficient to copper 
plates is 200 and not 2 .0Wm -2 K. 

Saffell and Windle give graphs of the variation 
of bi-refringence with distance from the sheet 
surface for 4 mm PC sheet quenched from 180 ~ C 
into water at 20 ~ C both before (Fig. 6 of  [2] ) and 
after (Fig. 9 of  [2]) corrections for residual 
orientational bi-refringence. These graphs are 
labelled on the vertical axes both with the bi- 
refringence An and the difference a x - -oz  in the 
principal stress (this should read o r - - a z ! ) .  How- 
ever the scales have changed between the two 
figures, and the ratio of the scales, which gives 
the stress optical coefficient of Equation 14, 
is 32 Brewsters in Fig. 6 and 108Br in Fig. 9, 
whereas the caption of Fig. 6 quotes it as being 
1.3 xl0~~ (1 Brewster = lO-12m2N-1 so I 
think this means C =  1012/1.3 x 101~ = 77 Br). 
Consequently it is not clear whether the surface 
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Figure 9 Variation with temperature of the thermal 
diffusivity and heat capacity per unit volume for HDPE. 

residual stress is roughly - - 4 0 M N m  -2 or - -16  
MNm -2. Because of this doubt, some of the 
quenching experiments were repeated - see 
Section 3.6. 

3.3. Residual stress predictions for semi- 
crystalline polyethylene 

The semi-crystalline polymer for which the best 
thermal data exists is polyethylene. However 
there are no published residual stress data for sheet 
quenching experiments on PE. Consequently the 
only comparison with experimental results poss- 
ible was that for the injection moulding of a high 
density polyethylene, of a kind that could be 
subsequently cross linked by moisture [4]. 

The thermal diffusivity of high density poly- 
ethylene (HDPE) has been measured by Hands 
[27], while the polymer temperature was being 
increased. Measurement of the specific heat of 
such a polyethylene during heating and cooling 
cycles was carried out with a Perkin Elmer DSC-II 
by courtesy of Dr. J. N. Hay of the Chemistry 
Department, Birmingham University). This reveals 
that the specific heat peak due to melting on 
heating appears as a peak due to crystallization on 
cooling at a 20 to 30 ~ C lower temperature. Hence 
the thermal diffusivity for cooling HDPE was 
estimated from the data of Hands using this 
temperature shift, and is shown in Fig. 9, together 
with variation in heat capacity with temperature. 
The variation in the Young's modulus of HDPE 
with temperature is far more marked than is the 
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Figure 10 The residual stress for injection moulded  
HDPE against z. The  results of  Coxon  and White  are 
shown as open circles. The  solid lines is the  prediction of  
the  20 layer model  for h = 1 0 0 0 W m  -2 K and T s =  

110 ~ C. 

case for PC, so data from Krigbaum [28] for the 
40sec creep modulus was used, the values being 
0 .9GNm -2 at 20~ and 0.134GNm -2 at 95~ 
when the data is plotted as In E against temperature 
there is an almost linear variation between these 
limits. 

Fig. 10 shows the predicted variation of re- 
sidual stress in a 3 mm HDPE sheet cooled from 
150~ with a surface heat transfer coefficient of 
1000Wm -2 K. The stresses are smaller than in 
the PC calculation of Fig. 8, but then so is the 
yield stress of HDPE i.e. about 25MNm "a at 
20 ~ C. The data of Coxon and White [4] using 
layer removal techniques on injection moulded 
3 mm thick bars is also shown. It provides a rough 
check on the magnitude of the predicted stresses, 
and shows that the pattern of residual stress 

variation in injection moulded bars is more com- 
plex than in quenched sheets, presumably because 
of the feeding of the part~alty sohdified moulding; 
the pressure variations during this process, and the 
density changes due to crystallization. 

Because polyethlene has strongly temperature 
dependent thermal properties and elastic modulus, 
it is useful to compare the effect of ignoring one 
or the other of these temperature dependences and 
using the 20~ values. Table III shows the pre- 
dicted central and surface residual stresses under 
three sets sets of assumptions. 

Ignoring all temperature dependences, or using 
the analytical theory with NBiot  = 3.6 and a* = 
17.6MNm -2, leads to an error of 17% at the 
centre of the sheet, and rather less at the sheet 
surface. The reduction in stress values in the 
second row compared with the first row is explic- 
able in terms of the colder, and hence stiffer, 
surface layers resisting the contraction of the other 
solid layers, and hence increasing the values of the 
reference lengths L~ of the next layers to solidify. 
The larger stresses in the third row compared with 
the second row are a result of the lower average 
thermal diffusivity in the temperature dependent 
case, and hence the larger effective value of the 
Blot modulus. 

The conclusions from the comparisons in Table 
III are that the E(T) correction partially compen- 
sates for the variation in thermal diffusivity, and 
that if an average value of thermal diffusivity for 
the temperature range of interest were used with 
the constant properties calculation, the overall 
error should be less than 10%. 

3.4. The effects of sectioning a residually 
stressed sheet 

Calculations of the stress distribution in sections, 
using the method of Section 2.3, were made both 
for predicted residual stress distributions and 
experimentally measured residual stress distri- 
butions. Since the results were almost identical, 
the experimental stress distribution results are 

T A B L E  l I I  Predicted residual stresses in a 3 m m  thick polyethylene sheet  quenched  f rom 150 ~ C to 20 ~ C for 

h = 1 0 0 0 W m  -2 K 

Condi t ions  Residual  Stresses (MN m -2) Sohdificat ion t ime (sec) 

E (T) k (7") pCp (7") Surface Centre 

Cons tan t  Cons tan t  - -  11.1 4.1 3.4 
Variable Cons tan t  - -  10.8 3.9 3.4 
Variable Variable - -  12.5 4.9 13.1 
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Figure 11 Residual stress variation calculated from 
bi-refringenee measurements on PC sheets quenched from 
170~ into iced water. Solid lines represent sheets 
1.09mm, 3.23mm and 6.09mm t h i c k . -  . . . .  rep- 
resents a 6.15 mm PC sheet quenched from 160 to 0 ~ C. 

presented,  since they can be compared with 
photoelast ic photographs of  sections. The exper- 
imental  results were for an "inf ini te"  sheet o f  PC 
6 .13ram thick, that was quenched from 160~ 
into iced water. The calculation of  the residual 
stress distr ibution from bi-refringence measure- 
ments is described in Section 3.6, and Fig. 11 
shows the residual stress variation. The central 
tensile stress was 7 . 9 M N m  -2, and the surface 
compressive stress was --  19.5 MN m -2 . 

Calculations were made for a range of  values 
of  the section half  width to the sheet half thick- 
ness xo/zo (Fig. 3), and the stress components  at 
certain key points are presented in Table IV. 

In order to relieve the residual stresses to less 

than 5% of  their values in an infinite sheet, Table 
IV shows that  the section thickness must  be 
~<20% of  the sheet thickness. (The apparently 

slightly higher values when Xo/Zo = 0.1 are an 
artefact  due to the boundary elements becoming 
too  close to each other). A thin section with Xo/Zo 
~< 0.2 will only relieve tile axx stress components ,  
it will also be necessary forYo/Zo to be ~<0.2 for 
oyy to be relieved. However, such a tall thin 
section 'would have low photoelast ic sensitivity 
because of  the short light path. The argument in 
Section 2.5 that  the optical retardation due to 
residual stresses Rx = 0, for a thin slice with 
Yo "r regardless of  the value o f x o ,  can be used 
to design a more useful section shape. Table IV 
shows that the condit ion Yo "~Zo means effec- 
tively that Yo ~< 0.2Zo, so a section obeying this 
condit ion,  and of  sufficient optical path length, 
2xo, to give adequate sensitivity, can be used to 
measure the retardation,  R x, and hence the 
molecular orientation contr ibut ion to the hi- 
re fringence. 

Table IV also enables us to determine the 
length of  plate that is effectively an infinite sheet. 
It can be seen that  a section with Xo >> 5Zo will 
have at its mid plane, x = 0, a fully developed 
maximum shear stress pat tern (Columns 4 and 6 in 
the table). This does not  mean that  a plate with 
Xo =Yo =5Zo can be quenched and thereby 
contain a fully developed residual stress field at 
x = y  = 0 ,  because we have not  considered the 
effect of  heat  flow in the x or y directions. How- 
ever by examining by polarized fight a plate with 
Xo/Zo "" 15 it is observed that  the end effects due 
to two dimensional heat  flow do not  extend into 
the central third of  the plate, so i f  the central third 

was cut from such a plate it would still contain 
a fully developed residual stress profile at x = 0. 

The case o f  Xo/Zo = 5 is worth examining in 
more detail, as Saffell and Windle [2] have esti- 

TAB LE I V Stress components in sections, normalized with respect to residual stresses in an infinite sheet 

Section shape Tensile stress components at the origin Maximum shear stress at the point (x,z) 

~ azz r(O,O) ~(Xo,O) ~(O,zo) 
Xo ]Zo 

~;MO) a~(O) r~(O) r~(O) r~(Zo) 

1.00 0.00 1.00 1.00 
5.0 0.95 0.00 0.95 1.22 1.02 
2,0 0.92 0.09 0.83 1.24 1.01 
1.0 0.37 0.44 0.07 1.12 0.69 
0.5 --0.01 0.24 0.25 0.38 0.29 
0.2 0.00 0.05 0.05 0.00 0.03 
0.1 0.00 0.04 0.04 0.06 0.10 
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Figure 12Predicted principal stress variation along the 
z = 0 midplane of a sheet section cut from a 6 mm PC 
sheet, having a length to thickness ratio of 5, that has 
been quenched from 160 to 0 ~ C. + represents exx and 
o represents azz. 

mated the residual stress variation in such a section 

(their Fig. 3). Fig. 12 shows that they are correct 

in attributing the peak in ~'max at the centre of the 
cut plane to the  compressive peak in azz at the cut 
surface, but  they are incorrect in assuming this is 

balanced by a uniform tensile azz  over the central 
80% of the section. Fig. 12 shows there is a tensile 

peak in the through thickness stress, azz  at about 
Zo from the cut surface, but  that this stress com- 
ponent decays to a zero value at the centre of the 

section. 
In a square section with Xo = Zo a complex 

stress pattern develops, with a biaxial tension at 
the origin and peak compressive stress components 
at the midpoints of each face (Fig. 13a). The 
overall stress level is of the order of 50% of the 
infinite sheet case. 

3.5.  Pa r t i a l l y  sec t ion ing  a res idua l l y  
stressed sheet  

The analysis described in Section 2.4 was used to 
see the effect of  partially sectioning a sheet. The 
residual stress data was for temperature indepen- 

dent thermal properties, NBiot = 13.3 and a* = 
31 .5MNm -2, and the sheet was taken to be 

6.13 mm thick. The first thing to note is that if a 

sheet is sectioned half way through, the cut 
ending at z = 0 (Fig. 4), the result is not  to relieve 
the stresses in half the sheet, and leave the stresses 

in the other half untouched. This is because the 
original residual stresses on the uncut half z > 0 
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Figure 13 Isochromatic (maximum shear stress) patterns in a square section cut from the same PC sheet as in Fig. 12, 
the vectors at selected points represent the principal stresses on the scale shown. (a) predicted pattern (b) The observed 
isochromatic pattern. In both cases the isochromatic contours levels are labelled in MN m -2 . 
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Figure 14 Predicted variation in the stress intensity factor, 
KI, of a crack growing from the surface through a 6.15 
mm thick PC sheet quenched from 160 to 0 ~ C. 

have a net bending moment about the y-axis. 
Therefore cutting the sheet must modify the 
residual stress distribution. Since partially section- 
ing the sheet is of little quantitative use in deter- 
ming the residual stresses by photoelastic means, 
no predicted stress distributions have been pre- 
sented. However, as a crack is a special case of a 
cut of negligible thickness, it was felt worthwhile 
to present a fracture mechanics analysis of crack 
growth through a residually stressed sheet. Fig. 14 
shows how the value of K I varies with the crack 
length for the 6.13 mm PC sheet modelled. The KI 
values are initially negative; in the mathematical 
model this is achieved by the crack faces overlap- 
ping each other, but in reality the crack faces 
would press on each other, and they would no 
longer be stress free. If some external tensile or 
bending load was also applied to the sheet, and 
this caused a positive Kz value at the crack tip in a 
sheet that did not contain residual stresses, then 
the total effect of such a load on the residually 
stressed sheet would be to cause a stress intensity 
factor at the crack tip of KI (external)+K I 
(residual stresses). Since this total KI would 
determine whether or not the crack should grow, 
using the fracture mechanics criterion KI ~>KIc 
where Kic is the critical stress intensity factor of 
the material, then the effect of the residual stresses 
is initially to make crack growth less likely. 

The K I value remains negative after the crack 

has grown past the z-co-ordinate where the residual 
stresses become tensile in the uncracked sheet. The 
minimum Kic of--O.4MNm -~'s in Fig. 14 should 
be compared with the Kic of about 2.2 MNm -l"s 
for rapid plane strain fracture in monotonically 
loaded PC, and the threshold AK for fatigue crack 
growth of about 0.9 MN m -l"s [29]. 

3.6. Bi-refringence measurements on 
quenched PC sheets 

Quenching experiments were carried out on Bayer 
"Makrolon" polycarbonate sheets of thickness 
1.09, 3.23 and 6.09 ram. This range of sheet thick- 
ness was investigated in order to obtain a significant 
range of Biot modulus in the quenching exper- 
iments. Sheets of 80 mm by 80 mm were dried at 
120~ for 24h, then heated to 170~ for more 
than 1 h to allow any molecular orientation to 
relax. The sheets were quenched into iced water, 
then a strip of width in the range 3 to 6 mm was 
cut using a Metallurgical Services high speed 
abrasive wheel cut-off machine. The cut surfaces 
were polished using SiC papers, and 5#m and 
0.1 #m alumina paste. The strip was then placed 
between circularly polarizing filters, and photo- 
graphed using a camera with close up rings, or a 
low powered microscope. The light path was in the 
x-direction of Fig. 2a, and either a sodium vapour 
lamp (wavelength 0.589~m) or white light was 
used to find the zero order isochromatic fringe. In 
the central part of these strips the isochromatic 
fringes were all parallel to the sheet surfaces. 

Slices of thickness less than 20% of the sheet 
thickness were then cut from these strips using 
a Buehler 'Isomet' low speed diamond saw, with 
water plus detergent as a cutting fluid. The slicing 
plane was normal to the length of the strip. The 
bi-refringence variation across these slices was 
again measured, with the light path in the x-direc- 
tion of Fig. 3, using a Babinet Compensator. The 
orientational bi-refringence found in these slices 
varied in the same manner as did the total bi- 
refringence found in the long strips, except that 
its magnitude was 10 to 20% of the total bi- 
re fringence. 

The orientational bi-refringence found in the 
thin slices was plotted against the z-co-ordinate, 
and then subtracted from a similar plot of the 
bi-refringence in the strip against z. The result 
is the bi-refringence due to the residual stresses. 
Equation 15 was then used to find the principal 
stress difference, using a value of 78 x 10 -12 
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m 2 N -1 for the stress optical coefficient of  

Makrolon polycarbonate [30] ,  a value that  has 
been Checked in these laboratories. The principal 
stress, azz, perpendicular to the sheet surface was 
found to be zero, by  the analysis that  leads to Fig. 
12, so the values o f  ayy (z), the residual stress 
distribution in the sheet ( =  axx (z) by symmetry) ,  
are obtained. Fig. 11 shows these residual stress 
distributions. They are slightly in error because the 
average of  ayy across the section is not  zero, the 
average values of  oy~ being - -  2.4 MN m -2 for the 
1.09ram sheet, + 0 . 5 M N m  -2 for the 3 .23mm 
sheet, and + 2.2 MN m -2 for the 6.09 mm sheet. 
The 1.09 mm sheet had an orientational bi-refrin- 
gence that  clearly varied with position, so errors of  
this magnitude were expected to arise. Table V 
compares the surface and central residual stresses 

from Fig. 11, with the predicted residual stresses 
from the finite difference model  for a range of  
heat  transfer coefficients. 

It is clear from Table V that  using a heat 
transfer coefficient of  2 0 0 W m  -2 K results in 
predicted residual stresses that are too low, and 
that  vary too much with sheet thickness. A heat 
transfer coefficient of  1000W m -2 K produces the 
correct magnitude of  residual stresses, but  again 
these vary too  much with sheet thickness, whereas 
when h = 4000 the central residual stresses are 
suitably thickness independent ,  but  the predicted 
surface residual stresses are too high and too 

variable. 
In order to check the validity of  the predicted 

effects of  sectioning a residually stressed sheet, a 
thick slice, of  square cross-section, from a 
6.15 mm PC sheet quenched from 160 to 0 ~ C was 

examined between circularly polarized sodium 
light. Luckily, in this sheet, the orientational bi- 
refringence observed in a thin slice was independent 
of the z-co-ordinate, so isochromatic fringes shown 
in Fig. 13b are contours of  maximum shear stress, 
and they have been labelled with the shear stress 

values. Comparing Fig. 13a and b it is clear that 
the overall patterns are similar in shape and 
magnitude,  with the compressive stress maxima 
occuring at the midfaces, and that there is a 
balanced biaxial stress state at the centre o f  the 
specimen. There are differences in the shapes of  
the lower contour levels but  these do not  invalidate 
the main features of  the analysis. 

4. Discussion 
Having modified the analytical theory of  Aggarwala 
and Saibel [8] so that  both  the Young's modulus 
and the thermal diffusivity of  the polymer were 
temperature dependent  it was rather surprising to 
see how little effect this had on the shape and 
magnitude of  the residual stress distribution. 
However, the finite difference one-dimensional 
cooling calculation is easy to implement,  and is 
certainly no more complex than the integrals in 

the theory of  Aggarwala, especially when further 
terms are required for high values o f  the Blot 
modulus. It is clear that ,  in order to be able to 
predict  the residual stresses arising from sheet 
quenching experiments,  reliable values of  the heat  
transfer coefficient are essential. The value for the 
quenching o f  polycarbonate in iced water has been 
found both from analysing cooling curves, and 
from comparing the predicted and actual residual 
stresses for different sheet thicknesses. This lat ter  

TAB LE VA Surface residual stresses in polycarbonate sheets quenched from 170 to 0 ~ C 

Sheet thickness (ram) Surface Residual Stress MN m -2 

Experimental value h* = 200 h = 1000 h = 4000 

1.09 --24.0 -- 5.2 -- 16.3 --32.5 
3.23 --21.0 -- 11.5 --28.3 --44.8 
6.09 -- 23.6 -- 17.2 -- 36.0 -- 50.2 

*h in W m -2 K. 

TABLE VB Central residual stresses in polycarbonate sheet quenched from 170 to 0 ~ C 

Central Residual Stress MN m -2 

Sheet thickness (mm) Expefimentalvalue h* -= 200 h = 1000 h = 4000 

1.09 4.0 2.4 7.0 10.4 
3.23 7.0 5.1 9.8 11.4 
6.09 10.0 7.2 10.8 11.7 

*h in W m  -~ K. 
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method has been used successfully for soda-lime 
glass sheets [31 ]. Although the agreement between 
theory and experiment is not exact, it is clear that 
the heat transfer coefficient is in the range 1000 to 
4000 W m -2 K. These values can be compared with 
the value calculated for a vertical plate of height 
80ram from the properties of water, using the 
Grashof, Nusselt and Prandtl numbers [17], giving 
830Win -2 K. 

The value of 2Win-2 K calculated by Saffell 
and Windle (or 200Win -2 K when the numerical 
error is corrected) is too low, the reason being that 
the cooling curve of the centre of a sheet is insen- 
sitive to the heat transfer coefficient, once it 
exceeds "~ 1000Win -2 K, as Fig. 7 shows. 

Calculations of  the effect of  sectioning a 
residually stressed plate validate the experimental 
approach of Saffell and Windle [2]. It is clear that 
the slice thickness must be less than 20% of the 
sheet thickness for residual stresses to be reduced 
to < 5% of the initial values. However, the details 
of the stress distribution in a section of thickness 
equal to the sheet thickness, or near the end of 
a long strip, could not easily be guessed. Again it is 
not easy to guess the effect of partially cutting 
through a residually stressed sheet; Fig. 14 shows 
that the residual stresses act to close a crack even 
when it has grown into the region of the sheet that 
was initially under tension. 

For the approach reported here to be of more 
general use it must be extended to two-dimensional 
heat flow, and to processes where pressure vari- 
ation and material flow occur during soldification. 
A start has been made by Rigdahl [13] who 
analysed the heat flow in an injection mould 
cavity of  size 50mm by 50mm by 5mm. He 
assumed that the temperature of the polystyrene 
in the cavity was constant in the z (thickness) 
direction, and that the heat transfer coefficient 
to the mould wall was 150Wm-2K (The Biot 
modulus for heat flow in the thickness direction 
is 1.9, which shows that there will in fact be 
significant temperature gradients in this direction). 
He used a standard method to calculate the time 
dependent temperature distribution T(x,y), and 
predicted that a solid skin would form at the 
periphery of the moulding and grow in towards 
its centre. It is not clear what assumptions he 
made to calculate the "equivalent temperature 
loads" from the temperature distribution, particu- 
larly as polystyrene above Tg was taken to be an 
elastic solid, nor was it stated whether the cavity 

pressure of  100 MN m -2 stayed constant with time. 
Consequently the results of his finite element 
analysis are of limited value. They can show that 
there is a residual compressive stress of between 
--12 a n d - - 2 0 M N m  -2 around the outer 50mm 
by 50 mm perimeter, and that the residual tensile 
stress in the central region is < 2 M N m  -2. A 
simple calculation of the residual stresses arising 
from heat flow in the z-direction in the central 
part of  the plate using Fig. 5 shows that the 
surface stress is -- 13 MN m -2 and the midplane 
stress is 5MNm -2 for the same heat transfer 
conditions that Rigdahl used. Therefore the 
residual stress distribution will be more complex 
than the one he describes. Nonetheless this finite 
element calculation is far superior to the assump- 
tion, as in Reference [31], that the residual 
stresses due to two-dimensional heat flow are a 
linear superposition of those due to the one 
dimensional components of heat flow on their 
own. It should now be possible to develop a better 
theory of the residual stresses as a result of two- 
dimensional heat flows in injection mouldings, 
using information from cavity pressure transducers 
to provide realistic data on the feeding of the 
mould. 

The analysis presented here has neglected the 
known viscoelastic behaviour of glassy polymers 
in the temperature range near Tg. This has not lead 
to serious errors in predicting the residual stress 
levels in sheets that have been cooled rapidly 
through this temperature range, but the analysis 
might be more in error for more slowly cooled 
sheets. Lee et al. [32] have shown how to use a 
thermorheologically simple viscoelastic model in 
calculating the residual stresses in tempered silicate 
glasses, and it should be possible to use a similar 
approach for polymeric glasses. 

Turning to the use of quenching to modify the 
properties of  plastics, [33] it is evident from the 
foregoing analysis that the disparate aims of either 
inducing residual stresses, or producing a glass with 
as low a density as possible, are capable of separate 
achievement. To obtain high residual stresses the 
requirements are a high Biot modulus, and as low 
a temperature for the quenching bath as possible. 
Thus thick sheets, and a high heat transfer coef- 
ficient to a liquid medium are desirable, but there 
is no need to heat the polymer to more than about 
Tg + 20 deg. However, there is a limit to the level 
of residual stresses that can be achieved. Not only 
does the compressive yield of the polymer set an 
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upper limit, but  also the process of stress relax- 

ation sets in at about 50% of the yield stress for 

PC, as shown by Yannas and Doyle [34]. Conse- 
quently for PC the upper limit on the surface 
compressive stress is about 30 MN m -2 . If a glassy 

polymer is required to be quenched so that it is as 
far as possible from its equilibrium glassy state, 
and yet contain no significant residual stresses, it 

should be quenched to a temperature roughly 
20~ below the solidification temperature, i.e. 
to 120 ~ C for PC, and then, when the temperature 
has equilibrated in the glassy state after the order 
of  I minute, it should be cooled to room tempera- 
ture. A similar cooling history is recommended for 
PC injection mouldings, presumably to minimize 
residual stresses and molecular orientation. 

The effect of residual stresses in glassy poly- 
mers are by no means so beneficial as they are in 

soda-lime-silica glasses. This is because of the 
lower magnitude of the potential residual stress, for 

polymers having low solidification temperatures. 
and because of the stress relaxation process that 

can occur subsequent to quenching. Moreover such 
residual stresses can be potentially harmful, as can 

be shown by drilling a hole through a residually 
stressed PC sheet (as is done to provide the chin 
strap fixing point is some motor-cycle safety 
helmets) then exposing the hole to a stress crazing 
agent. The ductility of PC allows the drilling of 
holes, and yet with the stress concentration factor 
of 2 for a circular hole in a biaxially stressed sheet, 

it is not  surprising that crazes develop at the mid 
thickness of the sheet, around the perimeter of the 

hole, 
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